Wave-induced sediment transport and onshore sandbar migration Academic Article uri icon

abstract

  • The 25-m onshore migration of a nearshore sandbar observed over a 5-day period near Duck, NC is simulated with a simplified, computationally efficient, wave-resolving singlephase model. The modeled sediment transport is assumed to occur close to the seabed and to be in phase with the bottom stress. Neglected intergranular stresses and fluid-granular interactions, likely important in concentrated flow, are compensated for with an elevated (relative to that appropriate for a clear fluid) model roughness height that gives the best fit to the observed bar migration. Model results suggest that when mean-current-induced transport is small, wave-induced transport leads to the observed onshore bar migration. Based on the results from the simplified phase-resolving model, a wave-averaged, energetics-type model (e.g., only moments of the near-bottom velocity field are required) with different friction factors for oscillatory and mean flows is developed that also predicts the observed bar migration. Although the assumptions underlying the models differ, the similarity of model results precludes determination of the dominant mechanisms of sediment transport during onshore bar migration.

publication date

  • September 2006