Predicted scattering of sound by diffuse hydrothermal vent plumes at mid-ocean ridges Academic Article uri icon

abstract

  • Amplitude and phase fluctuations of monochromatic acoustic signals traveling through diffuse mid-ocean ridge hydrothermal vent plumes are modeled using existing theory in an attempt to find suitable frequencies and path lengths for plume monitoring. Weak-scattering solutions are evaluated numerically, with model parameters adjusted to match observed plume characteristics. Constraints required for weak-scattering solutions to be valid can be met for transmission ranges of 500–2000 m and frequencies of 20–80 kHz. Therefore, because fluid structure and scattering strength are more closely linked for weak scattering than for stronger scattering, inversion for fluid statistical properties may be possible, enabling diffuse vent monitoring. Such monitoring would be subject to geometric assumptions such as transmission entirely within a statistically homogeneous plume. Performance-limiting phase fluctuations have also been computed for a 13–17 kHz geodetic survey system.

publication date

  • January 1998