Investigation of Mode Filtering as a Preprocessing Method for Shallow-Water Acoustic Communications Academic Article uri icon


  • Acoustical array data from the 2006 Shallow Water Experiment (SW06) was analyzed to show the feasibility of broadband mode decomposition as a preprocessing method to reduce the effective channel delay spread and concentrate received signal energy in a small number of independent channels. The data were collected by a vertical array, which spans the water column from 12-m depth to the bottom in shallow water 80 m in depth. Binary-sequence data were used to phase-shift-keyed (PSK) modulate signals with different carrier frequencies. No error correction coding was used. The received signals were processed by a system that does not use training or pilot signals. Signals received both during periods of ordinary internal wave activity and during a period with unusually strong internal wave solitons were processed and analyzed. Different broadband mode-filtering methods were analyzed and tested. Broadband mode filtering decomposed the received signal into a number of independent signals with a reduced delay spread. The analysis of signals from the output of mode filters shows that even a simple demodulator can achieve a low bit error rate (BER) at a distance 19.2 km.

publication date

  • October 2010