Evaluation of gas chromatographic isotope fractionation and process contamination by carbon in compound-specific radiocarbon analysis. Academic Article uri icon

abstract

  • The relevance of both modern and fossil carbon contamination as well as isotope fractionation during preparative gas chromatography for compound-specific radiocarbon analysis (CSRA) was evaluated. Two independent laboratories investigated the influence of modern carbon contamination in the sample cleanup procedure and preparative capillary gas chromatography (pcGC) of a radiocarbon-dead 3,3',4,4',5,5'-hexachlorobiphenyl (PCB 169) reference. The isolated samples were analyzed for their 14C/12C ratio by accelerator mass spectrometry. Sample Delta14C values of -996 +/- 20 and -985 +/- 20 per thousand agreed with a Delta14C of -995 +/- 20 per thousand for the unprocessed PCB 169, suggesting that no significant contamination by nonfossil carbon was introduced during the sample preparation process at either laboratory. A reference compound containing a modern 14C/12C ratio (vanillin) was employed to evaluate process contamination from fossil C. No negative bias due to fossil C was observed (sample Delta14C value of 165 +/- 20 per thousand agreed with Delta14C of 155 +/- 12 per thousand for the unprocessed vanillin). The extent of isotopic fractionation that can be induced during pcGC was evaluated by partially collecting the vanillin model compound of modern 14C/12C abundance. A significant change in the delta13C and delta14C values was observed when only parts of the eluting peak were collected (delta13C values ranged from -15.75 to -49.91 per thousand and delta14C values from -82.4 to +4.71 per thousand). Delta14C values, which are normalized to a delta13C of -25 per thousand, did not deviate significantly (-58.9 to -5.8 per thousand, considering the uncertainty of approximately +/-20 per thousand). This means that normalization of radiocarbon results to a delta13C of -25 per thousand, normally performed to remove effects of environmental isotope fractionation on 14C-based age determinations, also cor-rects sufficiently for putative isotopic fractionation that may occur during pcGC isolation of individual compounds for CSRA.

publication date

  • March 1, 2007