Pattern and variation of C:N:P ratios in China’s soils: a synthesis of observational data Academic Article uri icon


  • Inspired by previous studies that have indicated consistent or even well-constrained relationships among carbon (C), nitrogen (N) and phosphorus (P) in soils, we have endeavored to explore general soil C:N:P ratios in China on a national scale, as well as the changing patterns of these ratios with soil depth, developmental stages and climate; we also attempted to determine if well-constrained C:N:P stoichiometrical ratios exist in China’s soil. Based on an inventory data set of 2,384 soil profiles, our analysis indicated that the mean C:N, C:P and N:P ratios for the entire soil depth (as deep as 250 cm for some soil profiles) in China were 11.9, 61 and 5.2, respectively, showing a C:N:P ratio of ~60:5:1. C:N ratios showed relatively small variation among different climatic zones, soil orders, soil depth and weathering stages, while C:P and N:P ratios showed a high spatial heterogeneity and large variations in different climatic zones, soil orders, soil depth and weathering stages. No well-constrained C:N:P ratios were found for the entire soil depth in China. However, for the 0-10 cm organic-rich soil, where has the most active organism-environment interaction, we found a well-constrained C:N ratio (14.4, molar ratio) and relatively consistent C:P (136) and N:P (9.3) ratios, with a general C:N:P ratio of 134:9:1. Finally, we suggested that soil C:N, C:P and N:P ratios in organic-rich topsoil could be a good indicator of soil nutrient status during soil development.

publication date

  • April 2010