Arc magmas sourced from mélange diapirs in subduction zones Academic Article uri icon

abstract

  • At subduction zones, crustal material is recycled back into the mantle. A certain proportion, however, is returned to the overriding plate via magmatism. The magmas show a characteristic range of compositions that have been explained by three-component mixing in their source regions: hydrous fluids derived from subducted altered oceanic crust and components derived from the thin sedimentary veneer are added to the depleted peridotite in the mantle beneath the volcanoes. However, currently no uniformly accepted model exists for the physical mechanism that mixes the three components and transports them from the slab to the magma source. Here we present an integrated physico-chemical model of subduction zones that emerges from a review of the combined findings of petrology, modelling, geophysics, and geochemistry: Intensely mixed metamorphic rock formations, so-called mélanges, form along the slab-mantle interface and comprise the characteristic trace-element patterns of subduction-zone magmatic rocks. We consider mélange formation the physical mixing process that is responsible for the geochemical three-component pattern of the magmas. Blobs of low-density mélange material, so-called diapirs, rise buoyantly from the surface of the subducting slab and provide a means of transport for well-mixed materials into the mantle beneath the volcanoes, where they produce melt. Our model provides a consistent framework for the interpretation of geophysical, petrological and geochemical data of subduction zones.

publication date

  • December 2012