The Effects of Varying Salinity on Ammonium Exchange in Estuarine Sediments of the Parker River, Massachusetts Academic Article uri icon

abstract

  • We examined the effects of seasonal salinity changes on sediment ammonium (NH(4) (+)) adsorption and exchange across the sediment-water interface in the Parker River Estuary, by means of seasonal field sampling, laboratory adsorption experiments, and modeling. The fraction of dissolved NH(4) (+) relative to adsorbed NH(4) (+) in oligohaline sediments rose significantly with increased pore water salinity over the season. Laboratory experiments demonstrated that small (similar to 3) increases in salinity from freshwater conditions had the greatest effect on NH(4) (+) adsorption by reducing the exchangeable pool from 69% to 14% of the total NH(4) (+) in the upper estuary sediments that experience large (0-20) seasonal salinity shifts. NH(4) (+) dynamics did not appear to be significantly affected by salinity in sediments of the lower estuary where salinities under 10 were not measured. We further assessed the importance of salinity-mediated desorption by constructing a simple mechanistic numerical model for pore water chloride and NH(4) (+) diffusion for sediments of the upper estuary. The model predicted pore water salinity and NH(4) (+) profiles that fit measured profiles very well and described a seasonal pattern of NH(4) (+) flux from the sediment that was significantly affected by salinity. The model demonstrated that changes in salinity on several timescales (tidally, seasonally, and annually) can significantly alter the magnitude and timing of NH(4) (+) release from the sediments. Salinity-mediated desorption and fluxes of NH(4) (+) from sediments in the upper estuary can be of similar magnitude to rates of organic nitrogen mineralization and may therefore be important in supporting estuarine productivity when watershed inputs of N are low.

publication date

  • July 2010