Tundra vegetation effects on pan-Arctic albedo Academic Article uri icon


  • Recent field experiments in tundra ecosystems describe how increased shrub cover reduces winter albedo, and how subsequent changes in surface net radiation lead to altered rates of snowmelt. These findings imply that tundra vegetation change will alter regional energy budgets, but to date the effects have not been documented at regional or greater scales. Using satellite observations and a pan-Arctic vegetation map, we examined the effects of shrub vegetation on albedo across the terrestrial Arctic. We included vegetation classes dominated by low shrubs, dwarf shrubs, tussock-dominated graminoid tundra, and non-tussock graminoid tundra. Each class was further stratified by bioclimate subzones. Low-shrub tundra had higher normalized difference vegetation index values and earlier albedo decline in spring than dwarf-shrub tundra, but for tussock tundra, spring albedo declined earlier than for low-shrub tundra. Our results illustrate how relatively small changes in vegetation properties result in differences in albedo dynamics, regardless of shrub growth, that may lead to differences in net radiation upwards of 50 W m(-2) at weekly time scales. Further, our findings imply that changes to the terrestrial Arctic energy budget during this important seasonal transition are under way regardless of whether recent satellite observed productivity trends are the result of shrub expansion. We conclude that a better understanding of changes in vegetation productivity and distribution in Arctic tundra is essential for accurately quantifying and predicting carbon and energy fluxes and associated climate feedbacks.

publication date

  • April 1, 2011