A single monoclonal anti-Ia antibody inhibits antigen-specific T cell proliferation controlled by distinct Ir genes mapping in different H-2 I subregions. Academic Article uri icon

abstract

  • A xenogeneic rat anti-mouse Ia monoclonal antibody, M5/114 (gamma 2b, kappa), was studied for its effects in vitro on T cell proliferative responses. Strain distribution studies revealed that M5/114 could inhibit I-A subregion-restricted T cell responses of the H-2b,d,q,u but not the H-2f,k,s haplotypes, indicating that this xenoantibody recognizes a polymorphic determinant on mouse Ia molecules. This same monoclonal antibody was found to inhibit BALB/c (H-2d) T cell proliferation to both G60A30T10 and G58L38 phi 4. The Ir genes regulating responses to these antigens map to either the I-A subregion (GAT), or the I-A and I-E subregions (GL phi), raising the possibility that M5/114 recognizes both I-A and I-E subregion-encoded Ia glycoproteins. It could be shown, using appropriate F1 responding cells, that M5/114 does in fact affect GAT and GL phi responses by interaction with both the I-A and the I-E subregion products, and not by any nonspecific effect resulting from binding to the I-A subregion product alone. These results are consistent with genetic and biochemical studies directly demonstrating that M5/114 recognizes A alpha A beta and E alpha E beta molecular complexes. The existence of a shared epitope on I-A and I-E subregion products suggests the possibility that these molecules arose by gene duplication. Finally, the precise correlation between the Ia molecules recognized by M5/114 and the ability of this antibody to block T cell responses under Ir gene control strengthens the hypothesis that Ia antigens are Ir gene products.

publication date

  • March 1982