CaMKII mediates recruitment and activation of the deubiquitinase CYLD at the postsynaptic density. Academic Article uri icon


  • NMDA treatment of cultured hippocampal neurons causes recruitment of CYLD, as well as CaMKII, to the postsynaptic density (PSD), as shown by immunoelectron microscopy. Recruitment of CYLD, a deubiquitinase specific for K63-linked polyubiquitins, is blocked by pre-treatment with tatCN21, a CaMKII inhibitor, at a concentration that inhibits the translocation of CaMKII to the PSD. Furthermore, CaMKII co-immunoprecipitates with CYLD from solubilized PSD fractions, indicating an association between the proteins. Purified CaMKII phosphorylates CYLD on at least three residues (S-362, S-418, and S-772 on the human CYLD protein Q9NQC7-1) and promotes its deubiquitinase activity. Activation of CaMKII in isolated PSDs promotes phosphorylation of CYLD on the same residues and also enhances endogenous deubiquitinase activity specific for K63-linked polyubiquitins. Since K63-linked polyubiquitin conjugation to proteins inhibits their interaction with proteasomes, CaMKII-mediated recruitment and upregulation of CYLD is expected to remove K63-linked polyubiquitins and facilitate proteasomal degradation at the PSD.

publication date

  • 2014