Sustained elevation of calcium induces Ca(2+)/calmodulin-dependent protein kinase II clusters in hippocampal neurons. Academic Article uri icon


  • Treatment of cultured hippocampal neurons with the mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) in the absence of glucose mimics ischemic energy depletion and induces formation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) clusters, spherical structures with diameters of 75-175 nm [Dosemeci et al., J. Neurosci. 20 (2000) 3076-3084]. The demonstration that CaMKII clustering occurs in the intact, adult rat brain upon interruption of blood flow indicates that clustering is not confined to cell cultures. Application of N-methyl-D-aspartate (250 microM, 15 min) to hippocampal cultures also induces cluster formation, suggesting a role for Ca(2+). Indeed, intracellular Ca(2+) monitored with Fluo3-AM by confocal microscopy reaches a sustained high level within 5 min of CCCP treatment. The appearance of immunolabeled CaMKII clusters, detected by electron microscopy, follows the onset of the sustained increase in intracellular Ca(2+). Moreover, CaMKII does not cluster when the rise in intracellular Ca(2+) is prevented by the omission of extracellular Ca(2+) during CCCP treatment, confirming that clustering is Ca(2+)-dependent. A lag period of 1-2 min between the onset of high intracellular Ca(2+) levels and the formation of CaMKII clusters suggests that a sustained increase in Ca(2+) level is necessary for the clustering. CaMKII clusters disappear within 2 h of returning the cultures to normal incubation conditions, at which time no significant cell death is detected. These results indicate that pathological conditions that promote sustained episodes of Ca(2+) overload result in a transitory clustering of CaMKII into spherical structures. CaMKII clustering may represent a cellular defense mechanism to sequester a portion of the CaMKII pool, thereby preventing excessive protein phosphorylation.

publication date

  • 2001

has subject area