Dynamic morphology of calcium-induced interactions between phosphatidylserine vesicles. Academic Article uri icon

abstract

  • Structural changes in phosphatidylserine vesicles exposed to calcium chloride for various times have been observed by means of video-enhanced light microscopy and freeze-fracture electron microscopy. Large flat double-bilayer diaphragms form at the contacts between aggregated vesicles within milliseconds. Bilayers at and outside of diaphragms rupture and allow vesicles to collapse completely by flattening against each other within seconds. Collapse through intermediate states to a stable multilamellar phase is complete within minutes. The Ca-induced attraction energy and the resultant flattening at contacts between vesicles is far beyond that needed to stress bilayers to the point of rupture. Although the destabilizing response to this stress is preferential to the diaphragm region, 40% of adhering pairs rupture outside of the diaphragm region rather than fuse with each other. In this respect the mechanism of fusion between these vesicles may be fundamentally different from the controlled fusion process in cells.

publication date

  • April 1985