Voltage-dependent potassium channels: minK and Shaker families. Academic Article uri icon

abstract

  • In the last 4 years, the molecular identity of several types of voltage-dependent potassium channels has been discovered. These include channels that terminate action potentials and control repetitive neuronal firing, as well as channels whose biological role is not yet understood. The majority of these are encoded by genes related to the Drosophila Shaker gene. The large number of genes comprising the Shaker gene family, coupled with the existence of different channels that result from alternatively spliced messages from the same gene, provide both vertebrates and invertebrates with a wide selection of channels whose voltage-dependence and kinetics can be tailored to the needs of a specific cell. Mutagenesis experiments on such channels are providing new information on those regions of the protein that govern essential aspects of channel activity, such as gating by voltage and ion permeation. Another gene, unrelated to the Shaker family, encodes a voltage-dependent potassium channel that activates much more slowly than the Shaker channels. This has been termed the MinK channel.

publication date

  • April 1991