A store-operated Ca(2+) influx pathway in the bag cell neurons of Aplysia. Academic Article uri icon


  • Although store-operated Ca(2+) influx has been well-studied in nonneuronal cells, an understanding of its nature in neurons remains poor. In the bag cell neurons of Aplysia californica, prior work has suggested that a Ca(2+) entry pathway can be activated by Ca(2+) store depletion. Using fura-based imaging of intracellular Ca(2+) in cultured bag cell neurons, we now characterize this pathway as store-operated Ca(2+) influx. In the absence of extracellular Ca(2+), the endoplasmic reticulum Ca(2+)-ATPase inhibitors, cyclopiazonic acid (CPA) or thapsigargin, depleted intracellular stores and elevated intracellular free Ca(2+). With the subsequent addition of extracellular Ca(2+), a prominent Ca(2+) influx was observed. The ryanodine receptor agonist, chloroethylphenol (CEP), also increased intracellular Ca(2+) but did not initiate store-operated Ca(2+) influx, despite overlap between CEP- and CPA-sensitive stores. Bafilomycin A, a vesicular H(+)-ATPase inhibitor, liberated intracellular Ca(2+) from acidic stores and attenuated subsequent Ca(2+) influx, presumably by replenishing CPA-depleted stores. Store-operated Ca(2+) influx was partially blocked by low concentrations of La(3+) or BTP2, and strongly inhibited by either 1-[b-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole (SKF-96365) or a high concentration of Ni(2+). Regarding IP(3) receptor blockers, 2-aminoethyldiphenyl borate, but not xestospongin C, prevented store-operated Ca(2+) influx. However, jasplakinolide, an actin stabilizer reported to inhibit this pathway in smooth muscle cell lines, was ineffective. The bag cell neurons initiate reproductive behavior through a prolonged afterdischarge associated with intracellular Ca(2+) release and neuropeptide secretion. Store-operated Ca(2+) influx may serve to replenish stores depleted during the afterdischarge or participate in the release of peptide that triggers behavior.

publication date

  • November 2006