Rules of nonallelic noncomplementation at the synapse in Caenorhabditis elegans. Academic Article uri icon


  • Nonallelic noncomplementation occurs when recessive mutations in two different loci fail to complement one another, in other words, the double heterozygote exhibits a phenotype. We observed that mutations in the genes encoding the physically interacting synaptic proteins UNC-13 and syntaxin/UNC-64 failed to complement one another in the nematode Caenorhabditis elegans. Noncomplementation was not observed between null alleles of these genes and thus this genetic interaction does not occur with a simple decrease in dosage at the two loci. However, noncomplementation was observed if at least one gene encoded a partially functional gene product. Thus, this genetic interaction requires a poisonous gene product to sensitize the genetic background. Nonallelic noncomplementation was not limited to interacting proteins: Although the strongest effects were observed between loci encoding gene products that bind to one another, interactions were also observed between proteins that do not directly interact but are members of the same complex. We also observed noncomplementation between genes that function at distant points in the same pathway, implying that physical interactions are not required for nonallelic noncomplementation. Finally, we observed that mutations in genes that function in different processes such as neurotransmitter synthesis or synaptic development complement one another. Thus, this genetic interaction is specific for genes acting in the same pathway, that is, for genes acting in synaptic vesicle trafficking.

publication date

  • May 2001