Chloride conductance regulated by cyclic AMP-dependent protein kinase in cardiac myocytes. Academic Article uri icon


  • In heart cells, cyclic AMP-dependent protein kinase (PKA) regulates calcium- and potassium-ion current by phosphorylating the ion channels or closely associated regulatory proteins. We report here that isoprenaline induced large chloride-ion currents in voltage-clamped, internally-dialysed myocytes from guinea-pig ventricles. The Cl- current could be activated by intracellular dialysis with cAMP or the catalytic subunit of PKA, indicating regulation by phosphorylation. In approximately symmetrical solutions of high Cl- concentration, the macroscopic cardiac Cl- current showed little rectification, unlike the single-channel current in PKA-regulated Cl- channels of airway epithelial cells. But, like epithelial Cl- -channel currents, the cardiac Cl- current was sensitive to the distilbene,4,4'-dinitrostilbene-2,2'-disulphonic acid (DNDS). In the absence of kinase activation, cardiac sarcolemmal Cl- conductance was negligible. During beta-adrenergic stimulation of the heart, this novel Cl- conductance should accelerate action-potential repolarization and so protect impulse propagation in the face of the possibly arrhythmogenic increases in heart rate and in calcium entry into the cells.

publication date

  • August 31, 1989