Diversity of macrociliary size, tooth patterns, and distribution in Beroe (Ctenophora) Academic Article uri icon

abstract

  • Macrocilia are compound ciliary feeding organelles found inside the mouth of beroid ctenophores. Each macrocilium contains multiple 9 + 2 axonemes surrounded by a common membrane and bears a distinct capping structure at the distal end. The cap consists of extensions of axonemal microtubules that are embedded in an electron-dense matrix to form pointed projections or teeth. The teeth change from a straight to a hooked configuration during the beat cycle of macrocilia, and these changes in tip shape are thought to aid ingestion and/or breakup of prey. Using light and electron microscopy we found a remarkable diversity in macrociliary size, tooth pattern, and distribution among ‘’traditional” morphospecies of Beroe. These differences distinguish two major groups of Beroida. Group 1 includes most of the described nominal species [B. cucumis, B. abyssicola, B. ovata, B. gracilis, and B. sp. (Gloria)]. Their macrocilia are relatively small (typically 25-30 mum long, 5 mum diameter) and are restricted to a band around the inside of the lips. Two main types of macrociliary tooth patterns are found: 3-12 equally-sized teeth [B. cucumis (Mon), B. ovata, B. sp. (Gloria)] or 3 teeth with the middle tooth being larger (B. cucumis (CC), B. gracilis) or smaller (B. abyssicola). Group 2 species (B.forskali, B. mitrata) have greatly-flattened bodies and wide mouths. Their macrocilia cover an extensive area of the stomodaeal cavity, and are longer and stouter (80100 mum long, 12-15 mum in diameter). The shaft of the macrocilium is not hexagonal in transverse section, as in Group 1 species, but is wedge-shaped, being broader on the recovery-stroke (oral) side. The macrociliary tips are blunt and finely serrated, bearing one or more rows of 10-12 short teeth running at right angles to the beat plane. This diversity in macrociliary patterns is apparently related to differences in diet, feeding methods, and/or mechanism of prey digestion among various species. However, direct evidence for the functional significance of macrociliary diversity has not yet been obtained. The macrociliary patterns may be useful for clarifying problems of species identification and relationships within the Beroida. In particular, macrociliary differences found between and within traditionally distinguished morphospecies of Beroe raise the possibility of the existence of complexes of sibling species in this group.

publication date

  • June 1993