Distribution and seasonal variability in the benthic eukaryotic community of Río Tinto (SW, Spain), an acidic, high metal extreme environment. Academic Article uri icon

abstract

  • The eukaryotic community of the Río Tinto (SW, Spain) was surveyed in fall, winter and spring through the combined use of traditional microscopy and molecular approaches, including Denaturing Gradient Gel Electrophoresis (DGGE) and sequence analysis of 18S rRNA gene fragments. Eukaryotic assemblages of surface sediment biofilms collected in January, May and September 2002 were compared from 13 sampling stations along the river. Physicochemical data revealed extremely acidic conditions (the pH ranged from 0.9 to 2.5) with high concentrations of heavy metals, including up to 20 mg l(-1) Fe, 317 mg l(-1) Zn, 47 mg l(-1) As, 42 mg l(-1) Cd and 4 mg l(-1) Ni. In total, 20 taxa were identified, including members of the Bacillariophyta, Chlorophyta and Euglenophyta phyla as well as ciliates, cercomonads, amoebae, stramenopiles, fungi, heliozoans and rotifers. In general, total cell abundances were highest in fall and spring but decreased drastically in winter, and the sampling stations with the most extreme conditions showed the lowest number of cells, as well as the lowest diversity. Species diversity did not vary much during the year. Only the filamentous algae showed a dramatic seasonal change, since they almost disappeared in winter and reached the highest biomass during the summer. Principal Components Analysis (PCA) showed a high inverse correlation between pH and most of the heavy metals analyzed, as well as Dunaliella sp., while Chlamydomonas sp. was directly related to pH during May and September. Three heavy metals (Zn, Cu and Ni) remained separate from the rest and showed an inverse correlation with most of the species analyzed, except for Dunaliella sp.

publication date

  • November 2007