Ribose 1-phosphate and inosine activate uracil salvage in rat brain. uri icon

abstract

  • The purpose of this study was to determine the mechanism by which inosine activates pyrimidine salvage in CNS. The levels of cerebral inosine, hypoxanthine, uridine, uracil, ribose 1-phosphate and inorganic phosphate were determined, to evaluate the Gibbs free energy changes (deltaG) of the reactions catalyzed by purine nucleoside phosphorylase and uridine phosphorylase, respectively. A deltaG value of 0.59 kcal/mol for the combined reaction inosine+uracil <==> uridine+hypoxanthine was obtained, suggesting that at least in anoxic brain the system may readily respond to metabolite fluctuations. If purine nucleoside phosphorolysis and uridine phosphorolysis are coupled to uridine phosphorylation, catalyzed by uridine kinase, whose activity is relatively high in brain, the three enzyme activities will constitute a pyrimidine salvage pathway in which ribose 1-phosphate plays a pivotal role. CTP, presumably the last product of the pathway, and, to a lesser extent, UTP, exert inhibition on rat brain uridine nucleotides salvage synthesis, most likely at the level of the kinase reaction. On the contrary ATP and GTP are specific phosphate donors.

publication date

  • October 18, 1999