A crustacean serotonin receptor: cloning and distribution in the thoracic ganglia of crayfish and freshwater prawn. uri icon


  • Serotonin (5-HT) is involved in regulating important aspects of behavior and a variety of systemic physiological functions in both vertebrates and invertebrates. These functions are mediated through binding to 5-HT receptors, of which approximately 13 have been characterized in mammals. In crustaceans, important model systems for the study of the neural basis of behaviors, 5-HT is also linked with higher-order behaviors, associated with different 5-HT receptors that have been identified at the physiological and pharmacological levels. However, no crustacean 5-HT receptors have been identified at the molecular level. We have cloned a putative 5-HT(1) receptor (5-HT(1crust)) from crayfish, prawn, and spiny lobster and have raised antibodies that recognize this protein in all three organisms. 5-HT(1crust) immunoreactivity (5-HT(1crust)ir) was observed surrounding the somata of specific groups of neurons and as punctate staining within the neuropil in all thoracic ganglia of crayfish and prawn. In the crayfish, 5-HT(1crust)ir was also found in boutons surrounding the first and second nerves of each ganglion and on the 5-HT cells of T1-4. In the prawn, 5-HT(1crust)ir was also found in axons that project across the ganglia and along the connectives. We found examples of colocalization of 5-HT(1crust) with 5-HT, consistent with the short-term modulatory role of 5-HT, as well as cases of serotonergic staining in the absence of a 5-HT(1crust) signal, which might imply that other 5-HT receptors are found at these locations. We also observed receptors that did not possess counterpart 5-HT staining, suggesting that these may also mediate long-term neurohormonal functions of serotonin.

publication date

  • June 7, 2004