Integrating cover crops with chicken grazing to improve soil nitrogen in rice fields and increase economic output. uri icon


  • Winter fallow is important for renewing and improving soil fertility under double-cropping rice systems, such as those in southern China. Using a regenerative farming technology of integrating grass-chicken farming in a winter fallow field, we investigated soil nitrogen conversion and assessed the agricultural economic benefits of the whole farmland ecosystem. To test the effects of chicken grazing on the fallow system, we established field treatments involving adding chickens to a field planted with the cover crops, including cover milk vetch (Astragalus sinicus) with chicken grazing treatment (MC) and cover ryegrass (Lolium spp.) with chicken grazing (RC); cover crops only, including cover milk vetch (Astragalus sinicus) treatment (M) and cover ryegrass (Lolium spp.) (R); and a bare fallow field treatment (CK). We found that both cover crops (M and R) and cover crops with chicken grazing (MC and RC) increased nitrate, ammonium, dissolved organic nitrogen, and total nitrogen contents, and the increase was higher in MC and RC treatments. We also observed increased straw biomass and grain yield in the all four treatments, with more increases with chicken treatments as compared with CK. On the economic profits, MC increased by 101.72% and RC increased by 104.12% as compared with CK, while R increased by 5.19% and M reduced by 1.86% as compared with CK. The nitrogen transfer rate (the output/input ratio) of MC, RC, M, and R increased by 66.71%, 71.50%, 65.97%, and 59.97%, respectively, while the nitrogen accumulation rate (input-output) of MC, RC, M, and R increased by 480.56%, 612.98%, 356.74%, and 267.65%, respectively. Our study demonstrates that retaining nitrogen and gaining economic profit by integrating cover crops with chicken grazing is potentially more sustainable than adding cover crops alone. We further suggest that using the integrated grass-livestock farming technology can reduce environmental damage caused by commercial fertilizers.

publication date

  • April 15, 2020