Germ layers to organs: using Xenopus to study "later" development. Academic Article uri icon

abstract

  • The amphibian embryo is a highly successful model system with great promise for organogenesis research. Since the late 1800s, amphibians have been employed to understand vertebrate development and since the 1950s, the African clawed frog Xenopus laevis has been the amphibian of choice. In the past two decades, Xenopus has led the way forward in, among other things, identifying transcription factors, gene regulatory networks and inter- and intracellular signaling pathways that control early development (from fertilization through gastrulation and neurulation). Perhaps the best measure of how successful Xenopus has been as a model for early mammalian development is the observation that much of the knowledge gleaned from Xenopus studies has subsequently directly translated to discoveries of similar mechanisms operating in mouse development. Despite this great success in early development, research on organogenesis in Xenopus has lagged behind the mouse. However, recent technical advances now make Xenopus amenable for studies on later development, including organogenesis. Here, we discuss why Xenopus is well suited for such research and, we believe, permits addressing questions that have been difficult to approach using other model systems. We also highlight how Xenopus researchers have already begun studying a number of major organs, pancreas, liver, kidney and heart, and suggest how Xenopus might contribute more to these areas in the near future.

publication date

  • February 2006