A dynamic microbial community with high functional redundancy inhabits the cold, oxic subseafloor aquifer Academic Article uri icon

abstract

  • The rock-hosted subseafloor crustal aquifer harbors a reservoir of microbial life that may influence global marine biogeochemical cycles. Here we utilized genomic reconstruction of crustal fluid samples from North Pond, located on the flanks of the Mid-Atlantic Ridge, a site with cold, oxic subseafloor fluid circulation within the upper basement. Twenty-one samples were collected during a two-year period at three different depths and two locations with the basaltic aquifer to examine potential microbial metabolism and community dynamics. We observed minor changes in the geochemical signatures over the two years, yet a dynamic microbial community was present in the crustal fluids that underwent large shifts in the dominant taxonomic groups. An analysis of 195 metagenome-assembled genomes (MAGs) were generated from the dataset and revealed a connection between litho- and autotrophic processes, linking carbon fixation to the oxidation of sulfide, sulfur, thiosulfate, hydrogen, and ferrous iron in a diverse group of microorganisms. Despite oxic conditions, analysis of the MAGs indicated that members of the microbial community were poised to exploit hypoxic or anoxic conditions through the use of microaerobic cytochromes and alternative electron acceptors. Temporal and spatial trends from the MAGs revealed a high degree of functional redundancy that did not correlate with the shifting microbial community membership, suggesting functional stability in mediating subseafloor biogeochemical cycles.

publication date

  • August 3, 2017