Responses of small- and large-field bipolar cells to GABA and glycine. Academic Article uri icon

abstract

  • Morphologically distinct subtypes of retinal bipolar cells transmit information along parallel pathways to convey different aspects of the visual scene, but the synaptic mechanisms that regulate signal transmission are largely unknown. The all-rod retina of skate provides a comparatively simple system in which to correlate bipolar cell morphology with responses to the inhibitory neurotransmitters GABA and glycine. Two subtypes of bipolar cells can be identified when isolated in culture: large-field bipolar cells with extensive dendritic arbors, and small-field bipolar cells with one or two dendritic branches. Under voltage-clamp, glycine elicited significant current responses from small-field cells, but not from large-field bipolar cells. Although all bipolar cells displayed GABA-activated chloride currents mediated by both GABA(A) and GABA(C) receptors, the small-field bipolar cells showed a significantly greater contribution from GABA(A) receptors. The results of the present study reveal for the first time that the relative expression of the two classes of GABA receptor on each bipolar cell type correlates with cell morphology and the presence of the glycine receptor.

publication date

  • March 2, 2001