An open-ocean forcing in the East China and Yellow seas Academic Article uri icon


  • Recent studies have demonstrated that the annual mean barotropic currents over the East China and Yellow seas (ECYS) are forced primarily by the oceanic circulation in the open-ocean basin through the Kuroshio Current (KC), the western boundary current of the subtropical gyre in the North Pacific Ocean. The local wind stress forcing plays an important but secondary role. Those previous results were mainly qualitative and from a simple barotropic model forced by a steady wind stress field. They remain to be tested in a more complete 3-D model with both wind stress and buoyancy fluxes. In addition, the seasonal variability of major ECYS currents may involve different forcing mechanisms than their annually averaged fields do, and this can only be addressed when a seasonally varying forcing is used in the model. In this paper, we will address these issues by using a 3-D baroclinic model. Our results confirm the finding from the previous studies that the KC is the primary forcing mechanism for major annually mean currents in the ECYS, which include the Taiwan Strait Current, the Tsushima Warm Current, and the Yellow Sea Warm Current (YSWC), etc. However, the local monsoonal forcing plays a prominent role in modulating the seasonal variability of all major currents in the region. A deep northwestward intrusion of the YSWC in winter, for instance, is mainly due to a robustly developed China Coastal Current and Korea Coastal Current, which draw water along the Yellow Sea Trough to feed the southward flows along the west and east coasts of the Yellow Sea.

publication date

  • December 21, 2010