The expanding roles and mechanisms of G protein-mediated presynaptic inhibition. Academic Article uri icon


  • Throughout the past five decades, tremendous advancements have been made in our understanding of G protein signaling and presynaptic inhibition, many of which were published in the Journal of Biological Chemistry under the tenure of Herb Tabor as Editor-in-Chief. Here, we identify these critical advances, including the formulation of the ternary complex model of G protein-coupled receptor signaling and the discovery of G?? as a critical signaling component of the heterotrimeric G protein, along with the nature of presynaptic inhibition and its physiological role. We provide an overview for the discovery and physiological relevance of the two known G??-mediated mechanisms for presynaptic inhibition: first, the action of G?? on voltage-gated calcium channels to inhibit calcium influx to the presynaptic active zone and, second, the direct binding of G?? to the SNARE complex to displace synaptotagmin downstream of calcium entry, which has been demonstrated to be important in neurons and secretory cells. These two mechanisms act in tandem with each other in a synergistic manner to provide more complete spatiotemporal control over neurotransmitter release.

publication date

  • February 1, 2019