Pax group III genes and the evolution of insect pair-rule patterning. Academic Article uri icon


  • Pair-rule genes were identified and named for their role in segmentation in embryos of the long germ insect Drosophila. Among short germ insects these genes exhibit variable expression patterns during segmentation and thus are likely to play divergent roles in this process. Understanding the details of this variation should shed light on the evolution of the genetic hierarchy responsible for segmentation in Drosophila and other insects. We have investigated the expression of homologs of the Drosophila Pax group III genes paired, gooseberry and gooseberry-neuro in short germ flour beetles and grasshoppers. During Drosophila embryogenesis, paired acts as one of several pair-rule genes that define the boundaries of future parasegments and segments, via the regulation of segment polarity genes such as gooseberry, which in turn regulates gooseberry-neuro, a gene expressed later in the developing nervous system. Using a crossreactive antibody, we show that the embryonic expression of Pax group III genes in both the flour beetle Tribolium and the grasshopper Schistocerca is remarkably similar to the pattern in Drosophila. We also show that two Pax group III genes, pairberry1 and pairberry2, are responsible for the observed protein pattern in grasshopper embryos. Both pairberry1 and pairberry2 are expressed in coincident stripes of a one-segment periodicity, in a manner reminiscent of Drosophila gooseberry and gooseberry-neuro. pairberry1, however, is also expressed in stripes of a two-segment periodicity before maturing into its segmental pattern. This early expression of pairberry1 is reminiscent of Drosophila paired and represents the first evidence for pair-rule patterning in short germ grasshoppers or any hemimetabolous insect.

publication date

  • September 2001