Variance in animal longevity: contributions of heterogeneity and stochasticity. Academic Article uri icon


  • Variance in longevity among individuals may arise as an effect of heterogeneity (differences in mortality rates experienced at the same age or stage) or as an effect of individual stochasticity (the outcome of random demographic events during the life cycle). Decomposing the variance into components due to heterogeneity and stochasticity is crucial for evolutionary analyses.In this study, we analyze longevity from ten studies of invertebrates in the laboratory, and use the results to partition the variance in longevity into its components. To do so, we fit finite mixtures of Weibull survival functions to each data set by maximum likelihood, using the EM algorithm. We used the Bayesian Information Criterion to select the most well supported model. The results of the mixture analysis were used to construct an age √ó stage-classified matrix model, with heterogeneity groups as stages, from which we calculated the variance in longevity and its components. Almost all data sets revealed evidence of some degree of heterogeneity. The median contribution of unobserved heterogeneity to the total variance was 35%, with the remaining 65% due to stochasticity. The differences among groups in mean longevity were typically on the order of 30% of the overall life expectancy. There was considerable variation among data sets in both the magnitude of heterogeneity and the proportion of variance due to heterogeneity, but no clear patterns were¬†apparent in relation to sex, taxon, or environmental conditions.

publication date

  • 2018