Shared genetic contribution to Ischaemic Stroke and Alzheimer's Disease. Academic Article uri icon

abstract

  • OBJECTIVE: Increasing evidence suggests epidemiological and pathological links between Alzheimer's disease (AD) and Ischaemic Stroke (IS). We investigated the evidence that shared genetic factors underpin the two diseases. METHODS: Using genome wide association study (GWAS) data from METASTROKE+ (15,916 IS cases and 68,826 controls) and IGAP (17,008 AD cases and 37,154 controls), we evaluated known associations with AD and IS. On the subset of data for which we could obtain compatible genotype-level data (4,610 IS cases, 1,281 AD cases and 14,320 controls), we estimated the genome-wide genetic correlation (rG) between AD and IS, and the three subtypes (cardioembolic, small vessel, large vessel), using genome-wide SNP data. We then performed a meta-analysis and pathway analysis in the combined AD and small vessel stroke datasets to identify the SNPs and molecular pathways through which disease risk may be conferred. RESULTS: We found evidence of a shared genetic contribution between AD and small vessel stroke (rG(SE)=0.37(0.17); p=0.011). Conversely, there was no evidence to support shared genetic factors in AD and IS overall, or with the other stroke subtypes. Of the known GWAS associations with IS or AD, none reached significance for association with the other trait (or stroke subtypes). A meta-analysis of AD IGAP and METASTROKE+ small vessel stroke GWAS data highlighted a region (ATP5H/KCTD2/ICT1), associated with both diseases (p=1.8x10-8 ). A pathway analysis identified four associated pathways, involving cholesterol transport and immune response. INTERPRETATION: Our findings indicate shared genetic susceptibility to AD and small vessel stroke and highlight potential causal pathways and loci. This article is protected by copyright. All rights reserved.

publication date

  • May 2016