Single-fluorophore orientation determination with multiview polarized illumination: modeling and microscope design. Academic Article uri icon


  • We investigate the use of polarized illumination in multiview microscopes for determining the orientation of single-molecule fluorescence transition dipoles. First, we relate the orientation of single dipoles to measurable intensities in multiview microscopes and develop an information-theoretic metric-the solid-angle uncertainty-to compare the ability of multiview microscopes to estimate the orientation of single dipoles. Next, we compare a broad class of microscopes using this metric-single- and dual-view microscopes with varying illumination polarization, illumination numerical aperture (NA), detection NA, obliquity, asymmetry, and exposure. We find that multi-view microscopes can measure all dipole orientations, while the orientations measurable with single-view microscopes is halved because of symmetries in the detection process. We also find that choosing a small illumination NA and a large detection NA are good design choices, that multiview microscopes can benefit from oblique illumination and detection, and that asymmetric NA microscopes can benefit from exposure asymmetry.

publication date

  • December 11, 2017