On the Predominant Nonlinear Response of the Extratropical Atmosphere to Meridional Shifts of the Gulf Stream Academic Article uri icon


  • The North Atlantic atmospheric circulation response to the meridional shifts of the Gulf Stream (GS) path is examined using a large ensemble of high-resolution hemispheric-scale Weather Research and Forecasting Model simulations. The model is forced with a broad range of wintertime sea surface temperature (SST) anomalies derived from a lag regression on a GS index. The primary result of the model experiments, supported in part by an independent analysis of a reanalysis dataset, is that the large-scale quasi-steady North Atlantic circulation response is remarkably nonlinear about the sign and amplitude of the SST anomaly chosen over a wide range of GS shift scenarios. The nonlinear response prevails over the weak linear response and resembles the negative North Atlantic Oscillation (NAO), the leading intrinsic mode of variability in the model and the observations. Further analysis of the associated dynamics reveals that the nonlinear responses are accompanied by the shift of the North Atlantic eddy-driven jet, which is reinforced, with nearly equal importance, by the high-frequency transient eddy feedback and the low-frequency wave-breaking events. Additional sensitivity simulations confirm that the nonlinearity of the circulation response is a robust feature found over the broad parameter space encompassing not only the varied SST but also the absence/presence of tropical influence, the varying lateral boundary conditions, and the initialization scheme. The result highlights the fundamental importance of the intrinsically nonlinear transient eddy dynamics and the eddy–mean flow interactions in generating the nonlinear downstream response to the meridional shifts in the Gulf Stream.

publication date

  • December 2017