Flow separation effects on shoreline sediment transport Academic Article uri icon

abstract

  • Field-tested numerical model simulations are used to estimate the effects of an inlet, ebb shoal, wave height, wave direction, and shoreline geometry on the variability of bathymetric change on a curved coast with a migrating inlet and strong nearshore currents. The model uses bathymetry measured along the southern shoreline of Martha‚Äôs Vineyard, MA, and was validated with waves and currents observed from the shoreline to ~10-m water depth. Between 2007 and 2014, the inlet was open and the shoreline along the southeast corner of the island eroded ~200 m and became sharper. Between 2014 and 2015, the corner accreted and became smoother as the inlet closed. Numerical simulations indicate that variability of sediment transport near the corner shoreline depends more strongly on its radius of curvature (a proxy for the separation of tidal flows from the coast) than on the presence of the inlet, the ebb shoal, or wave height and direction. As the radius of curvature decreases (as the corner sharpens), tidal asymmetry of nearshore currents is enhanced, leading to more sediment transport near the shoreline over several tidal cycles. The results suggest that feedbacks between shoreline geometry and inner-shelf flows can be important to coastal erosion and accretion in the vicinity of an inlet.

publication date

  • July 2017