The influence of thermal acclimation on power production during swimming. II. Mechanics of scup red muscle under in vivo conditions. Academic Article uri icon


  • We have previously shown that the power output of red muscle from warm-acclimated scup is greatly reduced when the fish swim at low temperatures. This reduction occurs primarily because, despite the slowing of muscle relaxation rate at cold temperatures, warm-acclimated scup swim with the same tail-beat frequency and the same stimulation durations, thereby not affording the slower-relaxing muscle any extra time to relax. We hypothesize that power output during swimming could be increased if the stimulus duration were reduced or if the relaxation rate of the red muscle were increased during cold acclimation. Scup were acclimated to 10 degrees C (cold-acclimated) and 20 degrees C (warm-acclimated) for at least 6 weeks. Cold acclimation dramatically increased the ability of scup red muscle to produce power at 10 degrees C. Power output measured from cold-acclimated muscle bundles driven through in vivo conditions measured from cold-acclimated scup swimming at 10 degrees C (i.e. work loops) was generally much greater than that from warm-acclimated muscle driven through its respective in vivo conditions at 10 degrees C. The magnitude of the increase depended both on the anatomical location of the muscle and on swimming speed. Integrated over the length of the fish, the red musculature from cold-acclimated fish generated 2.7, 8.9 and 5.8 times more power than the red musculature from warm-acclimated fish while swimming at 30 cm s(-)(1), 40 cm s(-)(1) and 50 cm s(-)(1), respectively. Our analysis suggests that the cold-acclimated fish should be able to swim in excess of 40 cm s(-)(1) with just their red muscle whereas the warm-acclimated fish must recruit their pink muscle well below this speed. Because the red muscle is more aerobic than the pink muscle, cold acclimation may increase the sustained swimming speed at which scup perform their long seasonal migrations at cool temperatures. We then explored the underlying mechanisms for the increase in muscle power output in cold-acclimated fish. Contrary to our expectations, cold-acclimated muscle did not have a faster relaxation rate; instead, it had an approximately 50 % faster activation rate. Our work-loop studies showed that this faster activation rate, alone, can increase the mechanical power production during cyclical contractions to a surprising extent. By driving cold-acclimated muscle through warm- and cold-acclimated in vivo conditions, we were able to partition the improvement in power production associated with increased activation rate and the approximately 20 % reduction in the duration of electromyographic activity found in the accompanying study. Depending on the position and swimming speed, approximately 60 % of the increase in power output was due to the change in the red muscle's contractile properties (i.e. faster activation); the remainder was due to the shorter stimulus duty cycle of cold-acclimated scup. Thus, by both shortening the in vivo stimulation duration and speeding up the rate of muscle activation as part of cold-acclimation, scup achieve a very large increase in the power output of their red muscle during swimming at low temperature. This increase in power output probably results in an increase in muscle efficiency and, hence, a reduction in the energetic cost of swimming. This increase in power output also reduces reliance on the less aerobic and less fatigue-resistant pink muscle. Both these abilities may increase the swimming speed at which prolonged aerobic muscle activity can occur and thus reduce the travel time for the long seasonal migrations in which scup engage.

publication date

  • February 2001