Gravitational Potential Energy Balance for the Thermal Circulation in a Model Ocean Academic Article uri icon


  • Abstract The gravitational potential energy balance of the thermal circulation in a simple rectangular model basin is diagnosed from numerical experiments based on a mass-conserving oceanic general circulation model. The vertical mixing coefficient is assumed to be a given constant. The model ocean is heated/cooled from the upper surface or bottom, and the equation of state is linear or nonlinear. Although the circulation patterns obtained from these cases look rather similar, the energetics of the circulation may be very different. For cases of differential heating from the bottom with a nonlinear equation of state, the circulation is driven by mechanical energy generated by heating from the bottom. On the other hand, circulation for three other cases is driven by external mechanical energy, which is implicitly provided by tidal dissipation and wind stress. The major balance of gravitational energy in this model ocean is between the source of energy due to vertical mixing and the conversion from kinetic energy at low latitudes and the sink of energy due to convection adjustment and conversion to kinetic energy at high latitudes.

publication date

  • July 1, 2006