Energetics of lateral eddy diffusion/advection: Part I. Thermodynamics and energetics of vertical eddy diffusion Academic Article uri icon


  • Two important nonlinear properties of seawater thermodynamics linked to changes of water density, cabbeling and elasticity (compressibility), are discussed. Eddy diffusion and advection lead to changes in density; as a result, gravitational potential energy of the system is changed. Therefore, cabbeling and elasticity play key roles in the energetics of lateral eddy diffusion and advection. Vertical eddy diffusion is one of the key elements in the mechanical energy balance of the global oceans. Vertical eddy diffusion can be conceptually separated into two steps: stirring and subscale diffusion. Vertical eddy stirring pushes cold/dense water upward and warm/light water downward; thus, gravitational potential energy is increased. During the second steps, water masses from different places mix through subscale diffusion, and water density is increased due to cabbeling. Using WOA01 climatology and assuming the vertical eddy diffusivity is equal to a constant value of 2x10(3) Pa-2/s, the total amount of gravitational potential energy increase due to vertical stirring in the world oceans is estimated at 263 GW. Cabbeling associated with vertical subscale diffusion is a sink of gravitational potential energy, and the total value of energy lost is estimated at 73 GW. Therefore, the net source of gravitational potential energy due to vertical eddy diffusion for the world oceans is estimated at 189 GW.

publication date

  • March 2014