Chloride accumulation in mammalian olfactory sensory neurons. Academic Article uri icon

abstract

  • The generation of an excitatory receptor current in mammalian olfactory sensory neurons (OSNs) involves the sequential activation of two distinct types of ion channels: cAMP-gated Ca(2+)-permeable cation channels and Ca(2+)-gated Cl(-) channels, which conduct a depolarizing Cl(-) efflux. This unusual transduction mechanism requires an outward-directed driving force for Cl(-), established by active accumulation of Cl(-) within the lumen of the sensory cilia. We used two-photon fluorescence lifetime imaging microscopy of the Cl(-)-sensitive dye 6-methoxy-quinolyl acetoethyl ester to measure the intracellular Cl(-) concentration in dendritic knobs of OSNs from mice and rats. We found a uniform intracellular Cl(-) concentration in the range of 40-50 mm, which is indicative of active Cl(-) accumulation. Functional assays and PCR experiments revealed that NKCC1-mediated Cl(-) uptake through the apical membrane counteracts Cl(-) depletion in the sensory cilia, and thus maintains the responsiveness of OSNs to odor stimulation. To permit Cl(-) accumulation, OSNs avoid the "chloride switch": they do not express KCC2, the main Cl(-) extrusion cotransporter operating in neurons of the adult CNS. Cl(-) accumulation provides OSNs with the driving force for the depolarizing Cl(-) current that is the basis of the low-noise receptor current in these neurons.

publication date

  • September 8, 2004