LET-99, GOA-1/GPA-16, and GPR-1/2 are required for aster-positioned cytokinesis. Academic Article uri icon


  • At anaphase, the mitotic spindle positions the cytokinesis furrow [1]. Two populations of spindle microtubules are implicated in cytokinesis: radial microtubule arrays called asters and bundled nonkinetochore microtubules called the spindle midzone [2-4]. In C. elegans embryos, these two populations of microtubules provide two consecutive signals that position the cytokinesis furrow: The first signal is positioned midway between the microtubule asters; the second signal is positioned over the spindle midzone [5]. Evidence for two cytokinesis signals came from the identification of molecules that block midzone-positioned cytokinesis [5-7]. However, no molecules that are only required for, and thus define, the molecular pathway of aster-positioned cytokinesis have been identified. With RNAi screening, we identify LET-99 and the heterotrimeric G proteins GOA-1/GPA-16 and their regulator GPR-1/2 [10-12] in aster-positioned cytokinesis. By using mechanical spindle displacement, we show that the anaphase spindle positions cortical LET-99, at the site of the presumptive cytokinesis furrow. LET-99 enrichment at the furrow depends on the G proteins. GPR-1 is locally reduced at the site of cytokinesis-furrow formation by LET-99, which prevents accumulation of GPR-1 at this site. We conclude that LET-99 and the G proteins define a molecular pathway required for aster-positioned cytokinesis.

publication date

  • January 23, 2007