The activation gate of a voltage-gated K+ channel can be trapped in the open state by an intersubunit metal bridge. Academic Article uri icon

abstract

  • Voltage-activated K+ channels are integral membrane proteins containing a potassium-selective transmembrane pore gated by changes in the membrane potential. This activation gating (opening) occurs in milliseconds and involves a gate at the cytoplasmic side of the pore. We found that substituting cysteine at a particular position in the last transmembrane region (S6) of the homotetrameric Shaker K+ channel creates metal binding sites at which Cd2+ ions can bind with high affinity. The bound Cd2+ ions form a bridge between the introduced cysteine in one channel subunit and a native histidine in another subunit, and the bridge traps the gate in the open state. These results suggest that gating involves a rearrangement of the intersubunit contacts at the intracellular end of S6. The recently solved structure of a bacterial K+ channel shows that the S6 homologs cross in a bundle, leaving an aperture at the bundle crossing. In the context of this structure, the metal ions form a bridge between a cysteine above the bundle crossing and a histidine below the bundle crossing in a neighboring subunit. Our results suggest that gating occurs at the bundle crossing, possibly through a change in the conformation of the bundle itself.

publication date

  • September 1998

published in