Choline acetyltransferase and cholinesterases in the developing Xenopus retina. Academic Article uri icon


  • To understand the developmental regulation of acetylcholine (ACh) synthesis in the Xenopus retina, the properties of choline acetyltransferase (CAT) and cholinesterase (ChE), as well as histochemical localization of ChE in the retina, were studied during development. CAT activity first became detectable in the developing eyecup at stages 35/36. This was followed by a rapid, 50-fold rise in specific activity between stages 35/36 and 44. Since this rapid rise coincided with an almost identical increase in total ACh synthesis in whole retinae found in previous studies, it is suggested that this increase was sufficient to account for the rapid increase in total ACh synthesis. Moreover, it also correlated with increased rates of synaptogenesis in both the inner and the outer plexiform layers. Total ChE was resolved into specific and nonspecific ChE by the use of tetraisopropylpyrophosphoramide. Total ChE activities first became detectable at stages 35/36. Specific ChE [acetylcholinesterase (AChE)] increased from 50% at stage 39 to 95% of total ChE activities at stage 66. Again, the most rapid increase in both total ChE and AChE activities occurred between stages 35/36 and 44. Histochemical studies showed that AChE was localized predominantly in the two plexiform layers, with the inner plexiform layer more heavily stained at all stages. Moreover, a stratified staining pattern, clearly discerned in the inner plexiform layer, also correlated with synaptogenesis during this early period of retinal development.

publication date

  • May 1984