Identification and characterization of bacteria in a selenium-contaminated hypersaline evaporation pond. Academic Article uri icon


  • Solar evaporation ponds are commonly used to reduce the volume of seleniferous agricultural drainage water in the San Joaquin Valley, Calif. These hypersaline ponds pose an environmental health hazard because they are heavily contaminated with selenium (Se), mainly in the form of selenate. Se in the ponds may be removed by microbial Se volatilization, a bioremediation process whereby toxic, bioavailable selenate is converted to relatively nontoxic dimethylselenide gas. In order to identify microbes that may be used for Se bioremediation, a 16S ribosomal DNA phylogenetic analysis of an aerobic hypersaline pond in the San Joaquin Valley showed that a previously unaffiliated group of uncultured bacteria (belonging to the order Cytophagales) was dominant, followed by a group of cultured gamma-Proteobacteria which was closely related to Halomonas species. Se K-edge X-ray absorption spectroscopy of selenate-treated bacterial isolates showed that they accumulated a mixture of predominantly selenate and a selenomethionine-like species, consistent with the idea that selenate was assimilated via the S assimilation pathway. One of these bacterial isolates (Halomonas-like strain MPD-51) was the best candidate for the bioremediation of hypersaline evaporation ponds contaminated with high Se concentrations because it tolerated 2 M selenate and 32.5% NaCl, grew rapidly in media containing selenate, and accumulated and volatilized Se at high rates (1.65 microg of Se g of protein(-1) x h(-1)), compared to other cultured bacterial isolates.

publication date

  • September 2001