Neuronal domains in developing neocortex: mechanisms of coactivation. Academic Article uri icon


  • The mammalian neocortex consists of columnar circuits, whose development may be controlled by patterns of spontaneous activity. Columnar domains of spontaneously coactive neurons were previously described using Ca2+ imaging of slices from developing rat neocortex. We have now investigated the cellular mechanisms responsible for the coactivation of these domains. The activation starts in the center of a domain and spreads at speeds of approximately 100 microns/s. Domains occur in the presence of tetrodotoxin but are blocked by the gap junction blockers halothane and octanol. Simultaneous intracellular and optical recordings from dye-coupled cells reveal functional coupling between developing neocortical neurons. These data support the hypothesis that a neuronal domain results from the spontaneous excitation of one or a few trigger neurons that subsequently activate, either electrically or biochemically, the rest of the cells via gap junctions.

publication date

  • January 1995

published in