Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters. Academic Article uri icon


  • We assessed the pathways by which excitatory and inhibitory neurotransmitters elicit postsynaptic changes in [Ca2+]i in brain slices of developing rat and cat neocortex, using fura 2. Glutamate, NMDA, and quisqualate transiently elevated [Ca2%]i in all neurons. While the quisqualate response relied exclusively on voltage-gated Ca2+ channels, almost all of the NMDA-induced Ca2+ influx was via the NMDA ionophore itself, rather than through voltage-gated Ca2+ channels. Glutamate itself altered [Ca2+]i almost exclusively via the NMDA receptor. Furthermore, synaptically induced Ca2+ entry relied almost completely on NMDA receptor activation, even with low-frequency stimulation. The inhibitory neurotransmitter GABA also increased [Ca2+]i, probably via voltage-sensitive Ca2+ channels, whereas the neuromodulator acetylcholine caused Ca2+ release from intracellular stores via a muscarinic receptor. Low concentrations of these agonists produced nonperiodic [Ca2+]i oscillations, which were temporally correlated in neighbouring cells. Optical recording with Ca2(+)-sensitive indicators may thus permit the visualization of functional networks in developing cortical circuits.

publication date

  • March 1991

published in