On the Nature of the Mesoscale Variability in Denmark Strait Academic Article uri icon


  • AbstractTime series data from a mooring in the center of Denmark Strait and a collection of shipboard hydrographic sections occupied across the sill are used to elucidate the mesoscale variability of the dense overflow water in the strait. Two dominant, reoccurring features are identified that are referred to as a bolus and a pulse. A bolus is a large, weakly stratified lens of overflow water associated with cyclonic rotation and a modest increase in along-stream speed of 0.1 m s?1. When a bolus passes through the strait the interface height of the overflow layer increases by 60 m, and the bottom temperature decreases by 0.4°C. By contrast, a pulse is characterized by anticyclonic rotation, a strong increase in along-stream speed of >0.25 m s?1, a decrease in interface height of 90 m, and no significant bottom temperature signal. It is estimated that, on average, boluses (pulses) pass through the strait every 3.4 (5.4) days with no seasonal signal to their frequency. Both features have the strongest along-stream signal in the overflow layer, while the strongest cross-stream velocities occur above the Denmark Strait overflow water (DSOW). In this sense neither feature can be characterized as a simple propagating eddy. Their dynamics appear to be similar to that ascribed to the mesoscale variability observed downstream in the deep western boundary current. Strong correlation of bottom temperatures between the mooring in Denmark Strait and a downstream array, together with a match in the frequency of occurrence of features at both locations, suggests a causal relationship between the mesoscale variability at the sill and that farther downstream.

publication date

  • March 2017