Chemotaxis toward Nitrogenous Compounds by Swimming Strains of Marine Synechococcus spp. Academic Article uri icon


  • Many of the open-ocean isolates of the marine unicellular cyanobacterium Synechococcus spp. are capable of swimming motility, whereas coastal isolates are nonmotile. Surprisingly, the motile strains do not display phototactic or photophobic responses to light, but they do demonstrate positive chemoresponses to several nitrogenous compounds. The chemotactic responses of Synechococcus strain WH8113 were investigated using blind-well chemotaxis chambers fitted with 3.0-mum-pore-size Nuclepore filters. One well of each chamber contained cells suspended in aged Sargasso Sea water, and the other well contained the potential chemoattractant in seawater. The number of cells that crossed the filter into the attractant-seawater mixture was measured by direct cell counts and compared with values obtained in chambers lacking gradients. Twenty-two compounds were tested, including sugars, amino acids, and simple nitrogenous substrates, at concentrations ranging from 10 to 10 M. Strain WH8113 responded positively only to ammonia, nitrate, beta-alanine, glycine, and urea. Typically, there was a 1.5- to 2-fold increase in cell concentrations above control levels in chambers containing these compounds, which is comparable to results from similar experiments using enteric and photoheterotrophic bacteria. However, the threshold levels of 10 to 10 M found for Synechococcus spp. chemoresponses were lower by several orders of magnitude than those reported for other bacteria and fell within a range that could be ecologically significant in the oligotrophic oceans. The presence of chemotaxis in motile Synechococcus spp. supports the notion that regions of nutrient enrichment, such as the proposed microzones and patches, may play an important role in picoplankton nutrient dynamics.

publication date

  • August 1989