Acquired resistance to Ah receptor agonists in a population of Atlantic killifish (Fundulus heteroclitus) inhabiting a marine superfund site: in vivo and in vitro studies on the inducibility of xenobiotic metabolizing enzymes. Academic Article uri icon


  • New Bedford Harbor (NBH), MA, is a federal Superfund site that is heavily contaminated with polychlorinated biphenyls (PCBs) and other halogenated aromatic hydrocarbons (HAHs), including some potent aryl hydrocarbon receptor (AhR) agonists. A population of Atlantic killifish (Fundulus heteroclitus) continues to inhabit this site, despite accumulating extraordinarily high concentrations of PCBs (272 microg/g dry weight). To determine if NBH killifish have developed resistance to HAHs that act through the AhR, we examined the inducibility of cytochrome P4501A1 (CYP1A1), UDP glucuronosyl transferase (UGT), and glutathione S-transferase (GST) in fish from NBH and a reference site, Scorton Creek (SC, Cape Cod, MA; PCB concentrations 0.177 microg/g dry weight). 2,3,7,8-Tetrachlorodibenzofuran (TCDF) induced CYP1A1 mRNA, protein, and activity in SC fish in all tissues examined (liver, heart, gut, gill, kidney, spleen, and gonad). In contrast, NBH fish expressed low levels of CYP1A1 and showed no induction of CYP1A1 mRNA, protein, or activity by TCDF, or induction that was lower in magnitude or required higher doses of inducer. p-Nitrophenol UGT activity was not induced by TCDF in either population, while GST activity with 1-chloro-2,4-dinitrobenzene as substrate was induced only in NBH fish in one experiment. Inducibility of CYP1A1 by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or beta-naphthoflavone (BNF) was measured in primary hepatocyte cultures prepared from SC and NBH fish. TCDD induced CYP1A1 activity (ethoxyresorufin O-deethylase) to the same degree in hepatocytes from both populations, demonstrating the functionality of the AhR signaling pathway in NBH fish. However, hepatocytes from NBH fish were 14-fold less sensitive to TCDD than were those from SC fish. The nonhalogenated AhR agonist BNF also induced CYP1A1 in cells from both populations, although with only a 3-fold difference in sensitivity (NBH < SC). These results indicate that chronic exposure to high levels of HAHs has led to a reduction in the sensitivity of NBH killifish to AhR agonists. The resistance is systemic and pretranslational, and exhibits compound-specific differences in magnitude. These findings suggest an alteration in the AhR signal transduction pathway in NBH fish.

publication date

  • March 2001