cDNA cloning and characterization of an aryl hydrocarbon receptor from the harbor seal (Phoca vitulina): a biomarker of dioxin susceptibility? Academic Article uri icon

abstract

  • 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related planar halogenated aromatic hydrocarbons (PHAHs) are found at high concentrations in some marine mammals. Species differences in sensitivity to TCDD and PHAHs are a major limitation in assessing the ecological risk to these animals. Harbor seals accumulate high levels of PHAHs and are thought to be highly sensitive to the toxic effects of these compounds. To investigate the mechanistic basis for PHAH toxicity in harbor seals (Phoca vitulina), we sought to characterize the aryl hydrocarbon receptor (AHR), an intracellular protein that is responsible for PHAH effects. Here we report the cDNA cloning and characterization of a harbor seal AHR. The harbor seal AHR cDNA has an open reading frame of 2529 nucleotides that encodes a protein of 843 amino acids with a predicted molecular mass of 94.6 kDa. The harbor seal AHR protein possesses basic helix-loop-helix (bHLH) and Per-ARNT-Sim (PAS) domains. It is most closely related to the beluga AHR (82%) and human AHR (79%) in overall amino acid identity, indicating a high degree of conservation of AHR structure between terrestrial and some marine mammals. The ligand binding properties of the harbor seal AHR were determined using protein synthesized by in vitro transcription and translation from the cloned cDNA. Velocity sedimentation analysis on sucrose gradients showed that the harbor seal AHR exhibits specific binding of [(3)H]TCDD. The [(3)H]TCDD-binding affinity of the harbor seal AHR was compared with that of the AHR from a dioxin-sensitive mouse strain (C57BL/6) using a hydroxylapatite assay. The equilibrium dissociation constants of seal and mouse AHRs were 0.93+/-0.19 and 1.70+/-0.26 nM, respectively. Thus, the harbor seal AHR bound TCDD with an affinity that was at least as high as that of the mouse AHR, suggesting that this seal species may be sensitive to PHAH effects. The characteristics of the AHR potentially can be used as a biomarker of susceptibility to dioxin-like compounds, contributing to the assessment of the risk of these compounds to marine mammals and other protected animals.

publication date

  • July 2002